Защита от перенапряжений. Защита от перенапряжения: обзор доступных вариантов и эффективных устройств (90 фото) Как защитить электросеть от перенапряжения

  • Инженерные системы ,
  • Электрика

Как организовать защиту от перенапряжения сети в частном доме

Наличие в доме дорогостоящей электробытовой и электронной технике, природные катаклизмы и низкое качество электроснабжения в городских сетях вынуждают собственников жилья принимать меры, чтобы минимизировать возможный ущерб от вышеуказанных факторов.

В данной статье речь пойдёт о практических мерах по , которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.

Я выполнял указанные работы при переводе электропитания дома с однофазной на трёхфазную схему. Причём работы были не только выполнены, но и приняты представителями горэлектросетей без замечаний, а правильное функционирование приборов и эффективность защиты от перенапряжения проверена на практике в процессе эксплуатации. Известно, что основным условием подключения к городским электросетям является выполнение технических условий (ТУ), которые выдаются собственнику жилья. Как показал личный опыт, надеяться на то, что в данных ТУ будут отражены все мероприятия по безопасной эксплуатации электрооборудования, можно с определённым скептицизмом. На фото ниже показаны ТУ, выданные мне в горэлектросетях.

Примечание: пункты, помеченные на фото красным цветом, были мной реализованы самостоятельно ещё до получения тех. условий. Пункт, помеченный синим цветом, больше обусловлен интересами самих горсетей (защитить себя от ответственности за ущерб перед собственником дома по причине возможных проблем в зоне их ответственности).

Поэтому при разработке проекта схемы электроснабжения частного дома было решено использовать дополнительные меры по защите электрооборудования, которые не были отражены в ТУ. Ниже на фото показан фрагмент проекта электроснабжения моего жилого дома.

Как видно из фото, в учётно-распределительном шкафу (ЩР1), устанавливаемом внутри дома, предусмотрено устройство защиты от импульсных перенапряжений (УЗИП-II) согласно требованиям ТУ, выданных городскими электрическими сетями.

Так как ввод в дом осуществляется по воздушной линии, то с учётом требований ПУЭ (правил устройства электроустановок), на вводе в дом должны устанавливаться ограничители перенапряжений, что и было мной учтено в проекте (УЗИП-I на фото), которые установлены в шкафу (ЩВ1) на фасаде здания. Для защиты индивидуальных электроприёмников в доме используются ИБП (источники бесперебойного питания) и стабилизаторы напряжений.

Таким образом, защита электрооборудования дома от перенапряжений реализована в трёх зонах (уровнях):

  • на вводе в дом
  • внутри дома, в учётно-распределительном шкафу
  • индивидуальная защита электроприборов внутри помещений дома

Что важно учесть при выполнении работ

В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей. Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии. Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным. Причём даже в том случае, если эти «требования» противоречат требованиям технической документации на установленное оборудование, создают риск возникновения отказов в работе оборудования и т. д. Более подробно об этих «специфических требованиях» будет сказано ниже.

Теперь о технической стороне вопроса:

Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.

1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) - I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов - ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.

Что важно отметить по данному оборудованию:

  • Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.
  • В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю. Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения. В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.
  • В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии. Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз). Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.

2. В качестве УЗИП - II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.

Из особенностей данных аппаратов можно отметить следующее:

  • В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).
  • В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.
  • Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.

3. Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.

Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.

Практическое выполнение работ

Практическое выполнение работ не представляет собой большой сложности и показано на фото ниже, с небольшими пояснениями.

Монтаж ОПН-0,38 на вводе в дом

На фото показан монтаж ОПН в пластиковом боксе. Из особенностей нужно учесть, что специальных боксов для ОПН не существует, ибо конструктивно они крепятся на опорной конструкции и по типу своего исполнения могут устанавливаться открыто. Установка ОПН в боксе - мера вынужденная. Бокс должен иметь возможность для пломбировки. Для установки ОПН в боксе сделана самодельная конструкция из оцинкованной стали толщиной 1 мм, которая закреплена вместо штатной дин рейки, установленной в боксе на заводе-изготовителе.

При монтаже ОПН и подключении к ним проводов использование граверных шайб - обязательно. По требованиям ТУ, вводной автомат должен устанавливаться в боксе с возможностью пломбировки. Использовался аналогичный бокс, как для ОПН, что и показано на фото ниже (верхний пластиковый бокс в металлическом шкафу).

Такое нагромождение конструкций (пластиковых боксов в металлическом шкафу) на фасаде дома, обусловлено, как я отмечал ранее, именно специфическими требованиями горэлектросетей и вызывает не только заметное удорожание работ, но и дополнительных затрат сил, времени и нервов. На мой взгляд, правильное в техническом плане выполнение работ при воздушном вводе, выполненное проводом СИП, должно бы быть следующим: от опоры горэлектросетей до фасада дома прокладываем провод СИП, крепим на фасаде дома и обрезаем с небольшим напуском. Затем на каждый провод СИП крепим прокалывающий зажим с отводом из медного провода сечением 10 мм2, который заводится в шкаф (или бокс) на клеммы вводного автомата. Срезы проводов СИП закрываем герметичными колпачками. Таким образом, мы правильно «перешли» с алюминия (провод СИП) на медь. При этом у нас не возникло бы проблем с подключением медного провода (сечением 10 мм2) к клеммам модульного вводного автомата. Но такую работу представители горсетей не примут.

Поэтому провод СИП сечением 16 мм2 необходимо завести непосредственно на клеммы вводного автомата, который должен быть установлен в пластиковый бокс. Сделать это на практике очень сложно, так как нужно сохранить степень защиты бокса (для наружной установки не ниже IP 54), при этом провод СИП должен быть зафиксирован по отношению к пластиковому боксу и т. д.

На практике пришлось просто купить ещё один стальной шкаф, в котором установил сами пластиковые боксы, затем провод СИП был заведён в шкаф и закреплён в нём. Ниже на фото показаны завершающие работы по монтажу шкафа и его крепления на фасаде дома. Работы были приняты без замечаний и претензий.

Ещё один важный момент, на который нужно обратить внимание, связан с тем, что ОПН при работе во время грозы отводит ток в землю посредством подключения самого ОПН к контуру заземления. При этом токи могут достигать значительных величин: от 200 - 300 А и до нескольких тысяч ампер. Поэтому важно обеспечить кратчайший путь от самих ОПН до контура заземления медным проводником сечением не менее 10 мм2. Ниже на фото показано, как данное подключение выполнил я. Для надёжности работы ОПН я сделал подключение приборов к контуру заземления двумя медными проводами сечением 10 мм2 каждый. На фото провод в желто-зеленой трубке ТУТ (термоусаживающаяся трубка).

Монтаж аппаратов УЗМ-50М в учётно-распределительном шкафу

Выполнение электромонтажных работ проблем не доставляет, поскольку аппараты имеют штатное крепление на DIN-рейку. Фрагмент выполнения работ по монтажу УЗМ-50М в шкафу показан на фото ниже. Аппараты также должны устанавливаться в пластиковый бокс с возможностью пломбирования. На фото верхняя крышка бокса не показана.

С точки зрения электрической схемы подключения (хотя схема имеется в паспорте на аппарат и на корпусе самого аппарата) у неподготовленного читателя могут возникнуть вопросы. Чтобы пояснить особенности подключения аппарата, ниже на рисунке приводится схема подключения, приведённая в паспорте на УЗМ-50М, с некоторыми моими пояснениями.

Во-первых, как видно из схемы, УЗМ-50М является однофазным коммутирующим аппаратом и для своего функционирования требует обязательного подключения проводников L и N к верхним клеммам. Это показано на схеме подключения в обоих случаях (а и б). Далее, между схемой а и схемой б появляется различие, о котором производитель не даёт ни какого пояснения и приходится потребителю самостоятельно додумывать, как и в каких случаях какую схему использовать.

Различие заключается в том, что по верхней схеме (а) нагрузка подключается к аппарату по двум проводам (L и N). Т. е. в случае аварийного срабатывания аппарата цепь будет разорвана как по фазному проводнику (L), так и по проводнику (N).

В нижней схеме (б) нагрузка к аппарату подключается только по одному фазному проводнику (L), а второй провод (N) подключается к нагрузке напрямую, минуя аппарат. Т. е. в случае аварийного срабатывания аппарата он разомкнёт только фазный проводник, а проводник N остаётся подключенным всегда. Исходя из вышесказанного, а также зная, в каком случае допускается разрывать проводник N, а в каком - не допускается, можно сделать следующий вывод:

В случае подключения дома (квартиры) по двухпроводной линии (система TN-C), необходимо подключать аппарат УЗМ-50М по нижней схеме (б), так как в этом случае провод N выполняет две функции (нулевого рабочего проводника и нулевого защитного проводника), и его разрывать ни в коем случае нельзя.

В случае если подключение дома (квартиры) выполнено по трёхпроводной схеме (TN-S), либо аппарат установлен в системе (TN-C-S), на участке после разделения общего (PEN) проводника (на N и PE), то провод N можно разрывать. В этом случае аппарат УЗМ-50М нужно подключать по верхней схеме (а). Почему аппарат, согласно схеме производителя, нужно подключать после счётчика (на рисунке поставил знак вопроса) - мне малопонятно. Я, например, свои аппараты в шкафу подключал до счётчика, что бы они защищали всё оборудование, установленное в доме, в том числе и оборудование, установленное в самом шкафу. Кроме того, поскольку разделение общего PEN выполнено в шкафу (ЩР1) в доме, то подключал аппараты защиты по схеме а, т. е. с отключением как фазных, так и нулевого проводников. Что и показано на фото ниже.

Ещё один важный момент: поскольку данные аппараты не предназначены для использования в многофазной сети то необходимо знать и учитывать следующее.

В случае трёхфазного подключения дома и использования данных аппаратов, если в доме имеются только однофазные электроприёмники, никаких проблем с использованием и работой данных аппаратов быть не должно. Но если в доме имеются трёхфазные потребители, например, трёхфазный электродвигатель, то в случае аварийного срабатывания аппаратов (одного или двух), трёхфазный электроприёмник (например, электродвигатель) может выйти из строя. Таким образом, в данном случае потребуются дополнительные технические мероприятия по отключению трёхфазных потребителей при аварийном срабатывании аппаратов УЗМ.

Использование индивидуальных защитных приборов

Применение ИБП стабилизаторов напряжения для защиты отдельных электроприёмников в доме (телевизор, компьютер и т. д.) настолько стало привычным и распространённым, что какого-либо особого пояснения не требует, поэтому здесь не приводится.

Выводы

1. Опыт эксплуатации показал, что при сильной грозе защита может работать неоднократно, на относительно небольшом промежутке времени. С учётом этого можно смело утверждать, что при сильных грозах и при отсутствии защиты, электрооборудование, установленное в доме, может быть выведено из строя с достаточно высокой степенью вероятности.
2. В случае невозможности выполнения аналогичных работ в своём доме, в качестве защитной меры при грозовых разрядах необходимо хотя бы отключать электроприборы от сети, что, кстати, делают далеко не все.

Данный вариант защиты электрооборудования является недорогим бюджетным решением, но вполне работоспособным, надёжным и проверенным на практике. В случае применения аналогичного оборудования импортного производства и приглашения для выполнения работ специалистов цена вопроса может увеличиться в разы, что даже для средне обеспеченной семьи может быть накладно.

Защита электрооборудования от перенапряжений. Виды перенапряжений.

Перенапряжение - любое увеличение напряжённости электрического поля, в какой-либо части установки или линии электропередачи, достигающее величины, опасной для состояния изоляции установки. Перенапряжение представляет также опасность для людей, находящихся во время перенапряжения в непосредственной близости от установки или линии.

Причины перенапряжения.

Некоторые виды перенапряжения являются неизбежными при эксплуатации линий, так как следуют из свойств линии и природы проистекающих в них процессов .

К причинам перенапряжения можно отнести :

· Внутреннего происхождения:

· Заземление линии.

· Зануление линии.

· Изменение нагрузки.

· Включение и выключение линии. В частности, автоматическое повторное включение.

· Перемещающиеся (неустойчивые) дуговые короткие замыкания на линии.

· Резонанс и феррорезонанс в сети (например, при смещении и колебании нейтрали трёхфазной системы).

· Внешнего происхождения:

· Атмосферное электричество.

· Молния.

· Шаровая молния.

В сверхпроводящих соленоидах при переходе материала обмотки в несверхпроводящее состояние из сверхпроводящего встречается особый вид перенапряжения, вызванный резким возрастанием активного сопротивления соленоида (от нуля). В результате невозможности резкого уменьшения начального тока соленоида возникает разность потенциалов, которая может достичь нескольких сотен кв .

Особенности

Внутренние перенапряжения для изоляции линий и электроустановок с напряжением до 220 кВ обычно не представляют опасности .

Устройства защищающие от перенапряжения

Для защиты от перенапряжения используется множество устройств, среди которых следует выделить:

· Варистор

· Источник бесперебойного питания

· Разрядник

· Сетевой фильтр

· Стабилитрон

· Стабилизаторы:

· Стабилизатор напряжения

· Стабилизатор тока

· Шунтирующий электрический реактор

ЗАЩИТА ОТ ПЕРЕНАПРЯЖЕНИЙ

Внезапные повышения напряжения до значений, опасных для изоляции электроустановки, называются перенапряжениями. По своему происхождению перенапряжения бывают двух видов: внешние (атмосферные) и внутренние (коммутационные).

Атмосферные перенапряжения возникают при прямых ударах молнии в электроустановку или наводятся (индуцируются) в линиях при ударах молний вблизи от них. Внутренние перенапряжения возникают при резких изменениях режима работы электроустановки, например, при отключении ненагруженных линий, отключении тока холостого хода трансформаторов, замыкании фазы в сети с изолированной нейтралью на землю, резонансных, феррорезонансных явлениях и др.

Перенапряжения при прямых ударах молнии могут достигать 1000 кВ, а ток молнии - 200 кА. Разряд молнии обычно состоит из серии отдельных импульсов (до 40 шт.) и продолжается не более долей секунды. Длительность отдельного импульса составляет десятки микросекунд. Индуктированные перенапряжения достигают 100 кВ и распространяются по проводам линии электропередачи в виде затухающих волн. Атмосферные перенапряжения не зависят от номинального напряжения электроустановки и потому их опасность возрастает со снижением класса напряжения электрической сети. Коммутационные перенапряжения зависят от номинального напряжения электроустановки и обычно не превышают 4U ном. Из сказанного следует, что основную опасность представляют атмосферные перенапряжения.

Перенапряжения весьма опасны по своим последствиям. Пробив изоляцию, они могут вызывать КЗ, пожары в электроустановках, опасность для жизни людей и др. Поэтому каждая электроустановка должна иметь защиту от перенапряжений.

В качестве основных защитных средств от атмосферных повреждений применяют молниеотводы, разрядники и искровые промежутки. Главной частью всех этих аппаратов является заземлитель, который должен обеспечить надёжный отвод зарядов в землю.

Молниеотвод ориентирует атмосферный заряд на себя, отводя его от токоведущих частей электроустановки. Различают стержневые и тросовые (на воздушных линиях) молниеотводы.

Стержневые молниеотводы устанавливают вертикально. Они должны быть выше защищаемых объектов. Зона защиты одиночного стержневого молниеотвода - пространство, защищённое от прямых ударов молнии. Эта зона имеет вид конуса, образующая которого имеет вид кривой линии (рис. 1). На рис. 1 приняты следующие обозначения: h x - высота защищаемого объекта; h a - активная часть молниеотвода, равная превышению молниеотвода над высотой объекта; h - высота молниеотвода. При большой протяжённости или ширине объекта устанавливают несколько молниеотводов. Расстояние между молниеотводом и защищаемым объектом должно быть не более 5 м.

Рисунок 1.Зона защиты одиночного стержневого молниеотвода Тросовые молниеотводы подвешивают на опорах линий электропередачи напряжением 35 кВ и выше над проводами фаз. Тросы выполняют стальными и соединяют спусками с заземлением опор. Сопротивление заземления опоры при этом не должно превышать 10 Ом. Разрядник представляет собой комбинацию искровых промежутков и дополнительных элементов, облегчающих гашение электрической дуги в искровом промежутке. Разрядники по исполнению делятся на трубчатые и вентильные, а по назначению - на под станционные, станционные, для защиты вращающихся машин и др. Защитное действие разрядника заключается в том, что проходящий в них разряд ограничивает амплитуду перенапряжений до пределов, не представляющих опасности для изоляции защищаемого объекта. Возникающая при этом в разряднике электрическая дуга гасится после исчезновения импульсов перенапряжения раньше, чем срабатывает защита от КЗ, и, таким образом, объект не отключается от сети.

Каждый из разрядников, независимо от его типа и конструкции, состоит из искрового промежутка, один из электродов которого присоединяется к фазному проводу линии, а другой - к заземляющему устройству непосредственно или через добавочное сопротивление.

Через хорошо заземлённый искровой промежуток вслед за импульсным током, возникающим после пробоя перенапряжением, проходит сопровождающий ток нормальной частоты (50 Гц), обусловленный рабочим напряжением. Разрядник должен обладать способностью быстро погасить сопровождающий ток после исчезновения перенапряжения. Для этого разрядник снабжают помимо искрового промежутка последовательно включённым с ним специальным элементом, обеспечивающим гашение сопровождающего тока.

Гашение сопровождающего тока обеспечивается двумя способами:

в трубчатых разрядниках - специальным дугогасительным устройством;

в вентильных разрядниках - активными сопротивлениями с нелинейной (зависящей от приложенного напряжения) характеристикой (рис. 2, а).

Нелинейная характеристика (рис. 2, б) должна быть такой, чтобы при перенапряжениях сопротивление разрядника было малым. При рабочих напряжениях сопротивление разрядника должно быть большим, чтобы гасился сопровождающий ток.

Рисунок 2.Вентильный разрядник: а - схема; б - защитная характеристика

Трубчатые разрядники применяются как основное средство для защиты изоляции линии электропередачи и как вспомогательное средство защиты изоляции оборудования подстанций. Они выполняются с номинальными напряжениями 6, 10, 35 кВ.

Основной частью разрядника является трубка из твёрдого газогенерирующего диэлектрика (фибра, фибробакелит у разрядников серий РТ, РТФ; винипласт - у разрядников серии РТВ). Разрядник (рис. 3) имеет 2 искровых промежутка: внешний (3) и внутренний (2). Внешний изолирует трубку от постоянного соприкосновения с токоведущей частью, находящейся под напряжением. При пробое искровых промежутков под воздействием высокой температуры электрической дуги трубка 1 разлагается и генерирует газ (в основном водород), облегчающий гашение электрической дуги. Необходимость гашения дуги объясняется тем, что после прохождения перенапряжения по искровым промежуткам проходит сопровождающий ток разрядника, обусловленный рабочим напряжением электрической сети и имеющий частоту 50 Гц. Поэтому в обозначении разрядника, кроме букв, присутствует дробь, где числитель указывает номинальное напряжение, а знаменатель - пределы сопровождающего тока, успешно отключаемого разрядником. Например, обозначает: трубчатый разрядник на 10 кВ, отключающий сопровождающий ток (равный току КЗ) от 0,5 до 7 кА.

Рисунок 3.Устройство трубчатого разрядника Вентильные разрядники предназначены для защиты от атмосферных перенапряжений оборудования электростанций и подстанций, главным образом, силовых трансформаторов. Основными элементами разрядника являются многократные искровые промежутки и соединённые последовательно с ними нелинейные сопротивления в виде дисков из вилита. Термин «нелинейное сопротивление» означает, что сопротивление зависит от проходящего по нему тока. Сопротивление вилита уменьшается при возрастании проходящего по нему тока. Вилит не влагостоек, поэтому его помещают в герметизированный фарфоровый корпус. Для защиты подстанций используют разрядники серий РВП (разрядник вентильный подстанционный) и РВН (разрядник вентильный низковольтный).

Рисунок 4.Устройство вентильного разрядника серии РВП

Разрядник работает следующим образом. При перенапряжениях искровые промежутки 3 пробиваются, и по вилитовым дискам блока 4 ток проходит в землю. Сопротивление вилита резко уменьшается и перенапряжение на оборудование подстанции не поступает. При исчезновении перенапряжения сопротивление вилита возрастает, дуга в искровом промежутке гаснет, и ток через разрядник не проходит. Специальная защита воздушных линий от атмосферных перенапряжений не устанавливается, так как молния может ударить в линию в любой её точке. Все воздушные линии оборудуются устройствами АПВ, т. к. после КЗ, вызванного перенапряжением, и отключения линии, её изоляционные свойства восстанавливаются. Поэтому повторное включение линии оказывается в большинстве случаев успешным. В настоящее время широкое распространение получают ограничители перенапряжений (ОПН), представляющие собой нелинейные активные сопротивления без специальных искровых промежутков. ОПН обычно изготовляют путём спекания оксидов цинка и других металлов. В полученной после спекания поликристаллической керамике кристаллы окиси цинка имеют высокую проводимость, а межкристальные промежутки, сформированные из оксидов других металлов, имеют высокое сопротивление. Точечные контакты между кристаллами окиси цинка, возникающие при спекании, являются микроваристорами, т. е. имеют так называемые р-n переходы. Защитная характеристика ОПН имеет вид, близкий к нелинейной характеристике вентильного разрядника (рис. 2, б). Однако оксидно-цинковые сопротивления имеют значительно более высокую нелинейность, чем вилитовые сопротивления. Благодаря этому в ОПН нет необходимости использования искровых промежутков. Выпуск вентильных разрядников в нашей стране прекращён в 90-е годы из-за высокой трудоёмкости производства и настройки искровых промежутков. При том существенно расширена номенклатура выпускаемых ОПН. Достоинствами ОПН, по сравнению с вентильными разрядниками, являются взрывобезопасность, более высокая надежность, снижение уровня перенапряжений, воздействующих на защищаемое оборудование, и возможность контроля старения сопротивлений по току в рабочем режиме. Существенным недостатком ОПН и вентильных разрядников является невозможность обеспечения с их помощью защиты от квазистационарных перенапряжений (резонансные и феррорезонансные перенапряжения, смещение нейтрали при перемежающейся электрической дуге). Не следует забывать, что при длительных перенапряжениях происходит интенсивное старение ОПН, и они могут отказать, т. е. повредиться.

В распределительных электрических сетях в системе защиты от перенапряжений основное внимание уделяют защите оборудования подстанций. На рис. 5 приведены два варианта защиты подстанций напряжением 6-10 кВ от атмосферных перенапряжений при присоединении их непосредственно к воздушной линии (рис. 5, а) и кабельным вводом (рис. 5, б). В первом случае (а) на линии устанавливают два комплекта трубчатых разрядников F1, F2, один из которых (F2) - на концевой опоре линии, а F1 - на расстоянии 100-5-200 м от F2. В случае (б) комплект разрядников F2 устанавливают на конце кабеля, причём его заземление соединяют с оболочкой кабеля. Это необходимо для уменьшения перенапряжений, поступающих на подстанцию. Второй комплект F1 устанавливается при длине кабельного ввода менее 10 м. Расстояние между F1 и F2 равно 100-5-200 м. Вместо F2 при длине кабельной вставки более 50 м рекомендуется устанавливать вентильные разрядники.

Рисунок 5.Защита подстанции от перенапряжений: а - подстанция непосредственно присоединена к ВЛ; б - подстанция присоединена к ВЛ кабельным вводом Кроме трубчатых разрядников непосредственно на подстанциях устанавливают вентильные разрядники (или ОПН) FV3 и FV4 на сторонах высшего и низшего напряжений. Сочетание трубчатые разрядники - вентильный разрядник (или ОПН) применяется по следующей причине. Трубчатые разрядники не могут надёжно защищать трансформаторы и вращающиеся электрические машины от перенапряжений, т. к. имеют грубые защитные характеристики. Такую защиту обеспечивают вентильные разрядники. Назначение трубчатых разрядников заключается в том, чтобы предотвратить повреждение вентильных разрядников от приходящих из линии волн перенапряжений. Трубчатые разрядники уменьшают амплитуду и крутизну импульсов перенапряжений до величин, безопасных для вентильных разрядников и ОПН. В настоящее время при новом строительстве, реконструкции и техническом перевооружении объектов Федеральной сетевой компании России применение вентильных и трубчатых разрядников не рекомендуется по причине их низкой надёжности и из-за недостатков в технических характеристиках.

Возможно, вы сталкивались с подобными явлениями как, на несколько секунд возрастает яркость свечения лампочки. Это происходит по разным причинам. Например, в грозу молния, попадая в высоковольтные провода, добавляет электрического заряда. Данные явления очень пагубно сказываются на электроприборах и бытовой технике. Для того, чтобы избежать подобного, нужно в схему электрощитка , дополнительно встроить защитное устройство от перенапряжения.

Реле напряжения: барьер для электросети 220В

Для обеспечения контроля над входным напряжением и перепадов напряжения для сети 220 Вольт в квартире или частном доме используют релейное автоматическое устройство Барьер.

Основные элементы устройства:

  • Корпус;
  • Реле;
  • Контроллер;
  • Плата.

Говоря простым языком, с применением данного автомата, осуществляется защита от перенапряжения сети. Что в свою очередь подразумевает безопасное использование бытовой техники и электроприборов. Если напряжение в сети выше или ниже допустимых пределов, то устройство электрозащиты автоматически отключает подачу электричества.

Все элементы устройства располагаются на печатной плате. Но основную функцию (защитное отключение) выполняет реле, через которое проходит электричество. Так же к силовым элементам данного устройства, которые расположены на плате, относят резисторы, диоды и блок питания.

Элементом, выполняющим более тонкую работу, является контроллер, на основе которого обеспечивается контроль над измерением напряжения, светодиодными индикаторами и силовыми реле.

Обратите внимание! Подбор автоматического устройства по мощности, необходимо осуществлять согласно мощности всех потребителей.

Данный автомат устанавливается непосредственно в распределительный щиток. Корпус изделия предполагает установку на DIN – рейку. Занимаемое пространство соответствует трем однополюсным автоматам защитного отключения.

К техническим данным устройства относят: срабатывание происходит в пределах о 120 до 400 В, мощность автоматов варьируется от 16 до 80 А (Ампер). При падении напряжения да нижнего предела, срабатывание происходит через 0,2 секунды, при превышении допустимого предела, автомат отключается через 1 секунду.

Защита от перенапряжения в сети 380 Вольт

Контроль трехфазного напряжения, осуществляется посредством специальных устройств электрозащиты. Данные устройства используют как в промышленных, так и в бытовых целях.

Автоматический прибор служит для:

  • Контроля над обрывом и чередованием фаз;
  • Двухпороговой защиты от перенапряжения;
  • Защиты от скачков (бросков) напряжения импульсных;
  • Осуществления контроля частоты сети.

Данное устройство обеспечивает включение и отключение нагрузки при работе от генератора. Для его работы не требуется использование дополнительных пусковых устройств. В промышленности данные устройства используют для обеспечения безопасной работы различных видов оборудования и агрегатов. В бытовых условиях, он применяется для стабильной работы, например электропечей или духовок.

Работа устройства основана на том, что при скачках напряжения от электродвигателей, пускателей магнитных , или трансформаторных подстанций, он отключает подачу электроэнергии на данный участок электросети.

Установка устройства производится на DIN – рейку. Сечение проводов подключаемых в клеммы устройства достигает 35мм 2 . На регулировочной панели, расположены два переключателя, которые отвечают за настройку прибора на максимальное и минимальное значение напряжения, при котором он должен срабатывать.

Так же, панель прибора оснащена различными индикаторами, указывающими на то, что напряжение превышено или наоборот, меньше допустимого значения. Осуществляется индикация напряжения в каждой из трех фаз и клеммы для управления устройством дистанционно.

Важно знать! Данные устройства, предназначены для работы только с трехфазными электросетями.

Работа происходит следующим образом: после подключения его к сети, загораются индикаторы трех фаз. Если напряжение соответствует допустимым значениям, то загорается желтый знак.

Устройство защиты от перенапряжения в квартире: стабилизатор

Для того, чтобы обеспечить равномерную подачу напряжения к определенному прибору или линии в квартире или доме, используют специальные устройства (стабилизаторы напряжения). В настоящее время, существует несколько видов стабилизаторов.

Виды стабилизаторов:

  • Магниторезонансные;
  • Ступенчатые или дискретные;
  • Электромеханические.

Стабилизаторы напряжения, удобно применять в нескольких случаях: дом находится в частном секторе, а электричество подается от подстанции старого образца. По каким – либо причинам, нет необходимости выполнять электромонтажные работы.

Магниторезонансные стабилизаторы, являются самыми старыми образцами. Работа данных трансформаторов основывается на электромагнитном насыщении сердечника или дросселя. Стоит отметить, что достойным вариантом их назвать трудно, так как эти приборы зачастую маломощные, сильно искажается синусоидальная кривая напряжения на выходе. По сравнению с другими образцами, данный вид очень шумен при работе и при частом превышении напряжения быстро выходит из строя.

Ступенчаты стабилизаторы, по своей сути гораздо надежнее магниторезонансных. Работа данных приборов происходит следующим образом: при помощи ключей, происходит переключение обмоток трансформатора, а выравнивание напряжения происходит ступенчато. Из – за того, что при работе данного трансформатора, напряжение выравнивается очень быстро, его удобно использовать для подключения холодильников, стиральных машин и других устройств и агрегатов оснащенными электродвигателями.

Независимо от конструкции и принципа работы, все виды стабилизаторов осуществляют выравнивание различных значений напряжения до оптимальных.

Регулировка напряжения в электромеханических трансформаторах происходит при перемещении щетки по обмотке устройства. Данный прибор, является самым практичным из всех представленных, так как напряжение выравнивается очень плавно, при работе отсутствуют помехи, и намного ровнее выходное напряжение.

Схема подключения УЗО с защитой от перенапряжения

В настоящее время, в схемы с применением автоматов для защиты от перенапряжения, дополнительно встраивают устройства защитного отключения (УЗО), которые служат для обеспечения безопасности человека от поражения электрическим током.


Схема состоит из:

  • Электросчетчик;
  • Автомат защиты от перенапряжения;
  • Устройство защитного отключения;
  • Автоматы для каждой группы.

Стоит отметить, что существует две вариации сборки данной схемы. Одна служит для подключения всей электропроводки и приборов, другая для определенной группы.

В первую очередь, к электросети подключается двухполюсной автоматический выключатель. Далее от него провода подключаются к электросчетчику. После в схему встраивается УЗО. Важно понимать, что мощность УЗО, должна быть равна или на порядок превосходить модность вводного автоматического выключателя (например, автомат мощностью 20 А – УЗО мощностью 40 А). Затем, после УЗО, в схему подключается автомат с защитой от перенапряжения, и закончить сборку нужно несколькими однополюсными автоматами на каждую группу (розетки, освещение).

Обязательное условие! В данные схемы, устанавливается только двухполюсной вводной автомат.

Во второй схеме после счетчика, устанавливается дополнительный автомат (вводной 20 А, дополнительный 16 А). После него подключается защите от перенапряжения, от которой параллельно одна фаза идет на УЗО, с автоматами на розетки, и отдельный автомат на освещение.

Барьер защиты от перенапряжения (видео)

Большинство устройств для защиты от перенапряжения в сети, для установки и подключения, не требуют особенных знаний и умений. Главное понимать принцип работы и способы применения.

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

На рисунке ниже наглядно продемонстрирована величина грозового (U гр) и коммутационного импульса (U к) по отношению к номинальному напряжению сети (U н).

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт (если быть точным, то). Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

Сетевой фильтр

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).


Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.


В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

  • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
  • Магистральные, устанавливаются на входе электросети здания или квартиры.

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Источники бесперебойного питания

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.


В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

Категория Применение
В (I) Обеспечивают защиту при прямом попадании грозового разряда по системе молниезащиты. Место установки – вводно-распределительное устройство или главный распределительный щит. Основная нормирующая характеристика – величина импульсного тока.
С (II) Защищают токораспределительную сеть от коммутационных импульсов, а также играют роль второго защитного уровня при грозовом разряде. Место установки – распределительный щит.
D (III) Обеспечивают последний уровень защиты, при которой к потребителям не допускаются остаточные броски напряжения и дифференциальные перенапряжения. Помимо этого обеспечивается фильтрация высокочастотных помех. Установка производится перед потребителем. Могут быть выполнены в виде модуля под розетку, удлинителя и т.д.

Пример организации трехуровневой защиты продемонстрирован ниже.


Конструктивные особенности УЗИП.

Устройство представляет собой платформу (С на рис. 6) со сменным модулем (В), внутри которого находятся варисторы. При их выходе из строя индикатор (А) изменит цвет (в приведенной на рисунке модели на красный).


УЗИП Finder (категория II)

Внешне устройство напоминает автоматический выключатель, крепление – такое же (под DIN рейку).

Особенностью УЗИП является необходимость замены модулей при выходе варисторов из строя (что довольно просто). Конструкция модулей выполнена таким образом, что установить их на платформу с другим номиналом невозможно. Единственный серьезный недостаток связан с характерными особенностями варисторов. Им необходимо время, чтобы остыть, многократное попадание грозового разряда существенно усложняет этот процесс.

Защитное реле

В завершении рассмотрим реле контроля напряжения (РКН), эти устройства способны обеспечить защиту бытовых приборов от коммутационных импульсов, перекоса фаз, а также пониженного напряжения. С грозовыми импульсами они не справятся, поскольку на это не рассчитаны. Их сфера применения – защита внутренней сети квартиры, то есть там, где обеспечение грозозащиты входит в обязанности электрокомпаний.

Приборы могут устанавливаться во входном щитке, непосредственно, после электросчетчика, для этого предусмотрено крепление под DIN рейку.


Помимо этого выпускаются модификации приборов в виде удлинителей питания и модулей под розетку.


Данные устройства могут произвести только защитное отключение сети, при выходе напряжения за указанные пределы (устанавливается кнопками управления), после нормализации электросети производится ее подключение. Стабилизация и фильтрация не производятся.

Предостережения

Не следует доверять защиту своего дома самодельным конструкциям, в бытовых условиях бывает проблематично настроить собранную схему и протестировать ее работу в критических режимах.

Не имея практического опыта в организации грозозащиты, не стоит пытаться реализовать ее самостоятельно, эту работу лучше доверить профессионалам. Рекомендуем рассматривать эту часть статьи как информационную.

Все манипуляции с электрощитом, приборами и проводкой необходимо проводить только при отключенном электропитании.

Перенапряжение – это превышение предельно допустимого уровня напряжения в сети на 10 и более процентов.

В зависимости от типа сети допустимые по нормативам значения варьируются в диапазоне:

  • однофазная электросеть – от 198 до 242 вольт;
  • трехфазная электросеть – от 342 до 418 вольт.

Если напряжения превышает данные показатели, то речь уже идет о перенапряжении сети и нужно принимать защитные меры.

Опасность перенапряжения

Опасность перенапряжение состоит в том, что оно может вызвать в сбои в работе электрического оборудования и привести к частичной или полной его поломке. Оно может стать причиной сгорания холодильников, стиральных машин, телевизоров, компьютеров и других бытовых приборов.

Стоит отметить, что поломка бытовой техники – это не самое страшное последствие перенапряжения. Оно может стать причиной возгорания помещения и человеческих смертей, поэтому важно использовать средства защиты и обезопасить домашнюю электросеть.

Причины возникновения перенапряжения

Наиболее распространенная причина перенапряжения – это отгорание или обрыв нулевого провода, что приводит к тому, что ток циркулирует между фазами и часть потребителей получает пониженное напряжение, а часть – повышенное.

Также часто причиной перенапряжения становится ошибка при подключении кабеля в распределительном щитке – нулевой провод включается на место фазного и в квартиру вместо положенных 220 вольт поступает 380.

Значительную опасность для сети представляет разряд молнии в линии электропередач. В результате ударе возникает импульсное перенапряжение, достигающее нескольких тысяч вольт. Бывают случаи перенапряжения из-за сбоев на электрических подстанциях.

Способы защиты от перенапряжения

Для защиты от повышенного напряжения используются следующие устройства:

  • стабилизаторы напряжения;
  • ДПН+УЗО;
  • УЗИП.

Остановимся на каждом устройстве подробнее.

Стабилизаторы напряжения

Стабилизаторы обеспечивают надежную защиту сети от перенапряжения. Если напряжение выходит за предельно допустимый диапазон, то стабилизатор отключает подключенную группу от сети. Когда напряжения нормализируется, то регулятор включает питание снова. Современные стабилизаторы комплектуются дисплеями, отображающими текущее напряжение и показывающими график его скачков.

В продаже можно встретить различные типы этих устройств:

  • релейные;
  • феррорезонансные;
  • электромеханические;
  • симисторные.

Существуют различные схемы монтажа регуляторов. Оптимальный вариант – это установка устройства на каждый электроприбор, который необходимо защитить. Эта схема хороша тем, что для каждого потребителя можно подобрать подходящий по точности и мощности стабилизатор. Конечно, этот вариант и самый дорогой, поэтому чаще всего один стабилизатор устанавливается на группу или на всю квартиру. Его мощность рассчитывается путем суммирования мощности всех приборов.

Реле напряжения

Установка реле – это тоже довольно эффективный способ обезопасить домашнюю сеть. При больших перепадах напряжения, реле автоматически отключает потребителя, а при стабилизации – включает. Современные защитные реле выпускаются с микропроцессорами, которые позволяют проводить более тонкую настройку устройства.

Реле, как и стабилизаторы, можно устанавливать на отдельные приборы, на группы и на всю домашнюю сеть. При защите отдельного прибора, он подключается к реле, а оно уже к сети питания. При защите всего дома или группы приборов, реле устанавливается на распределительном щитке.

Датчик повышенного напряжения (ДПН) + устройство защитного отключения (УЗО)

ДНП – это датчик повышенного напряжения, а УЗО – устройство защитного отключения. ДНП проводит мониторинг работы сети и если значения напряжения превышают норму, то УЗО размыкает сеть.

Устройство защиты от импульсных перенапряжений (УЗИП)

УЗИП – это устройство защиты от импульсных напряжений. УЗИП применяется для защиты сети от импульсного перенапряжения, в особенности, от попадания молнии в ЛЭП. Устройство можно устанавливать, как на часть, так и на всю сеть.



Copyright © 2024 Строительный портал - Djec.