Светодиодная гирлянда на микроконтроллере. Переключатель елочных гирлянд на основе PIC16C84 Схемы гирлянд на микроконтроллерах

Вот и Новый год скоро! На прилавках магазинов рядом с мандаринами, конфетами и шампанским появляются елочные игрушки: разноцветные шары, мишура, всевозможные флажки, бусы и, конечно же, электрические гирлянды.

Обычную гирлянду из разноцветных лампочек, пожалуй, и не купить. Зато различных мигалок, в основном китайского производства, просто не счесть. Микроскопические лампочки могут располагаться на куске картона или вплетаются в ковер из проводов, которым можно украсить сразу целое окно.

Елочные гирлянды тоже отличаются большим разнообразием, прежде всего внешним оформлением, дизайном. Стоимость подобных гирлянд невелика, как, собственно, и мощность лампочек.

Большинство гирлянд имеют маленькую пластмассовую коробочку с одной кнопкой, шнуром с сетевой вилкой и проводами, идущими на гирлянду разноцветных лампочек. Оформление гирлянды может быть самым разнообразным.

Самый простой, и дешевый вариант состоит из микроскопических лампочек, вставленных . На обратной стороне упаковочной коробки написана инструкция по замене лампочек и правила техники безопасности, хотя запасных лампочек не прилагается. Именно такие гирлянды продаются в сети магазинов «Все по 38», правда, в последнее время уже по сорок рублей.

Рисунок 1. Гирлянда за сорок рублей

Гирлянды другого фасона имеют на лампочках небольшие пластиковые плафончики, например, в виде прозрачных цветков с лепестками. Но коробочка с кнопкой остается той, же самой, хотя цена гирлянды доходит рублей до двухсот. Попробуем открыть коробочку, и посмотреть, что же там внутри.

Рисунок 2. Внешний вид контроллера гирлянды с тремя тиристорами

В нижней части рисунка показаны два провода, это как раз подключение устройства к сети. Здесь же находится кнопка, с помощью которой переключаются режимы работы. В верхней части можно увидеть три тиристора и провода, отходящие к гирляндам.

В середине платы находится , - такая черная капля, установленная на маленькой печатной плате. Плата имеет контактные площадки, с помощью которых контроллер впаивается в основную плату.

Сколько тиристоров на плате

К выходам микроконтроллера подключаются управляющие электроды тиристоров, которые включают гирлянды лампочек. Микроконтроллер имеет четыре выхода, но часто, вместо четырех тиристоров на плате установлено только три, а в некоторых случаях всего два.

Необходимый визуальный эффект достигается подключением гирлянд и расположением лампочек: в одной гирлянде запаяны лампочки двух, а то и трех цветов. Как раз такая плата и показана на рисунке 2.

Если посмотреть на эту плату со стороны печатного монтажа, то можно увидеть, что три тиристора запаяны, а под четвертый имеются отверстия с залуженными контактными площадками, как показано на рисунке 3. В некоторых случаях отверстия даже не просверлены, мол, кому заблагорассудится, просверлит сам.

Рисунок 3. Плата контроллера гирлянды. Свободное место для тиристора

Здесь следует заметить такую особенность: если выход контроллера никуда не подключен, это вовсе не означает, что он нерабочий. Программа во всех контроллерах прошита, видимо, одна и та же, все выходы контроллера задействованы.

В этом легко убедиться с помощью стрелочного тестера. Если померить постоянное напряжение на свободной ноге, то стрелка будет скакать, дергаться и отклоняться вместе с миганием других гирлянд. Достаточно просто запаять в плату недостающий тиристор, и, пожалуйста, получаем полноценную четырехканальную гирлянду.

Тиристор можно взять со старой неисправной платы (бывает, что в негодность приходит контроллер) или за сорок рублей купить дополнительную гирлянду и оттуда извлечь тиристор. Для хорошего дела расходы крайне незначительны!

Принципиальная схема гирлянды

По печатной плате несложно составить принципиальную схему. Существуют две разновидности схем, несколько отличающиеся друг от друга. Первый, наиболее совершенный вариант показан на рисунке 4.

Рисунок 4. Контроллер китайской гирлянды. Вариант 1

Питание всей схемы осуществляется через VD1…VD4. Гирлянды питаются пульсирующим напряжением и включаются контроллером через тиристоры VS1…VS4. Резистор R1 и микроконтроллер DD1 образуют делитель напряжения, на выходе которого получается напряжение 12В.

Конденсатор C1 сглаживает пульсации выпрямленного напряжения. Через резистор R7 сетевое напряжение подается на вход контроллера 1 для синхронизации схемы с частотой сети 220В, что позволяет осуществлять фазовое управление тиристорами. Эта синхронизация позволяет осуществлять плавное зажигание и угасание гирлянд. Именно такие платы можно встретить в дорогих гирляндах.

Плата, показанная на рисунке 3, собрана по несколько упрощенной схеме, которая показана на рисунке 5.

Рисунок 5. Контроллер китайской гирлянды. Вариант 2

Сразу бросается в глаза, что тиристоров всего три штуки, а от выпрямительного моста остался всего один диод. Также исчезли резисторы из управляющих электродов тиристоров. Но, в целом, потребительские свойства остались теми же, что и в предыдущей схеме, несмотря на то, что лампочки зажигаются только тогда, когда на верхнем проводе схемы присутствует положительный полупериод сетевого напряжения. Без выпрямительного моста получается однополупериодное выпрямление.

Этот вариант схемотехнического решения присущ тем гирляндам, которые «все по сорок». Вот, собственно, и все, что можно сказать о схемотехнике китайских елочных гирлянд.

Как подключить мощные лампы

Мощность гирлянд невелика, лампочки просто микроскопические, кроме домашней елки вряд ли куда еще подойдут. Но иногда требуется подключить гирлянду с мощными лампами накаливания, например для декоративной подсветки фасадов зданий. Такая доработка уже была приведена в статье . Схема доработанной гирлянды показана на рисунке 8 в упомянутой статье.

Если не хочется переделывать плату

Гораздо проще обойтись без переделки платы контроллера. Все, что придется сделать, это изготовить четыре мощных выходных ключа с оптронными развязками и присоединить их вместо маломощных гирлянд. Схема силового ключа показана на рисунке 6.

Рисунок 6. Мощный силовой ключ с оптронной развязкой

Собственно, схема типовая, работает безотказно, никаких подводных камней в себе не содержит. Как только засвечивается светодиод оптрона MOC3021, открывается маломощный оптронный тиристор и через выводы 4, 6 и резистор R1 соединяются управляющий электрод и анод симистора BTA16-600. Симистор открывается и включает нагрузку, в данном случае гирлянду.

Оптрон следует применить без встроенной схемы CrossZero (детектор перехода сетевого напряжения через ноль), например, MOC3020, MOC3021, MOC3022, MOC3023. Если оптрон имеет узел CrossZero, то схема РАБОТАТЬ НЕ БУДЕТ! Об этом забывать не следует.

Симистор BTA16-600 обладает следующими параметрами: прямой ток 16А, обратное напряжение 600В. При токе 5А и напряжении 220В мощность нагрузки уже целый киловатт. Правда, потребуется установить симистор на радиатор.

Металлическая подложка изолирована от кристалла, о чем говорит буква А в маркировке симистора. Это дает возможность устанавливать симисторы на радиатор без слюдяных прокладок и изоляторов для винта. Кстати, именно эти симисторы стоят в регуляторах мощности бытовых пылесосов, при этом радиатор обдувается потоком воздуха на выходе пылесоса.

Если мощность нагрузки не более 400Вт, то можно обойтись и без радиатора. Цоколевка симистора показана на рисунке 7.

Рисунок 7. Цоколевка симистора BTA16-600

Этот рисунок будет совсем не лишним при сборке схемы силового ключа. Все четыре силовых ключа, лучше всего, собрать на общей печатной плате. Резистор R лучше собрать из двух резисторов мощностью по 2Вт, что позволит избежать их чрезмерного нагрева. Максимальный ток входного светодиода оптрона 50мА, поэтому ток в 20…30мА обеспечит его долговременную безотказную работу.

Рисунок 8. Подключение силовых ключей к плате контроллера

В целом все понятно и просто. От контроллера отпаиваются гирлянды, а вместо них запаиваются входные цепи силовых ключей. При этом не требуется никакого вмешательства в печатный монтаж контроллера. Исключение составляет только запаивание дополнительного тиристора, при условии, что его удастся найти. Также придется несколько умощнить сетевой шнур с вилкой, поскольку оригинальный имеет очень маленькое сечение.

При правильном монтаже и исправных деталях схема не нуждается в настройке. Конструкция устройства произвольная, лучше всего в металлическом корпусе, подходящих размеров, который будет выполнять роль радиатора для симисторов.

С целью обеспечения электробезопасности устройство следует включать через автоматический выключатель, или хотя бы плавкий предохранитель.

С наступающим вас дорогие пользователи. И к предстоящему празднику электронный портал сайт решил порадовать вас схемой-новогодняя гирлянда на PIC-микроконтроллере. Перейдем к просмотру данного устройства.

Она содержит четыре канала, к которым подключаются последовательно соединённые светодиоды, изображенные на рисунке ниже:


Ядром схемы является микроконтроллер PIC16F628A. Код программы написан на языке ассемблер, смотреть листинг Garland16F628ATEMP.ASM. Полный цикл внутрисхемного программирования и отладки микроконтроллера PIC16F628A был осуществлён при помощи MPLAB IDE v8.15 (интегрированная среде разработки), компилятор MPASM v5.22 (входит в MPLAB IDE v8.15) и MPLAB ICD 2 (внутрисхемный отладчик - «Дебагер»). Для тех, кто не располагает средствами приведёнными выше, а имеет свою программу для работы с HEX файлами и иной программатор, можно в соответствующем проекте найти файл 16F628ATEMP.HEX.

Микроконтроллер DD1 имеет функциональные выходы RB4 - RB7, к которым подключаются усиливающие полевые MOSFET транзисторы VT1 - VT4. Техническую спецификацию транзисторов можно найти на сайте . Стоки транзисторов подключены к нажимным клеммникам X2 - X5. Напряжение питание нагрузки задаётся источником питания схемы, который подключают к разъёму X1. Максимальный коммутируемый ток на канал составляет 0.5 А. Микроконтроллер DD1 не имеет функции принудительного сброса, вывод для сброса подключен через резистор R1 к положительному потенциалу питания. Для генерации тактовой частоты в микроконтроллере используется встроенный генератор тактовой частоты на кристалле. Прибор может эксплуатироваться в диапазоне температур от - 40 °С до +85 °С.

Прибор запитывается от переменного или постоянного источника напряжения, подключаемого к разъему X1. Номинальное напряжение источника питания 12 В. Номинальный ток источника питания зависит от нагрузки и составляет 0.5 - 2 А. Для стабилизации питания используется обычная схема из диодного моста VD1, линейного стабилизатора DA1, фильтрующих конденсаторов C1 - C4.

В микроконтроллер запрограммированы 3 световых эффекта в основе лежит эффект «бегущие огни»:

  • Гирлянды поочерёдно загораются и гаснут в одну и так же повторяют в другую сторону.
  • Гирлянды поочерёдно загораются и когда все четыре гирлянды горят, начинают поочерёдно гаснуть в том же направлении, так же повторяется и в обратном порядке.
  • 1 и 2, 3 и 4 гирлянды поочерёдно перемигиваются между собой.

Микроконтроллер запрограммирован таким образом, что выполняет заранее установленное число повторов светового эффекта. Стоить отметить, что интервал времени между загораниями гирлянд меняется (нарастает, достигая пика, а затем падает), то есть виден эффект «временной раскачки». Для лучшей демонстрации световых эффектов гирлянды (так как они пронумерованы на схеме) следует располагать по порядку в одной плоскости. В данном случае украшение ели от корней до верхушки (по вертикали, разбив ель на четыре сектора для гирлянд), от 1 до 4 гирлянды, соответственно.

Питание гирлянд связано с источником питания подключаемым к разъёму X1, следовательно нужно рассчитывать последовательно соединённые светоизлучающие элементы (светодиоды, лампы накаливания). Общее напряжение питания находится из суммы напряжений последовательно соединённых светоизлучающих элементов. Так например, последовательно соединённых ярких светодиодов рассчитанных на напряжение 2 - 2,5 В будет 6 штук в одной гирлянде. Так как светодиоды потребляют 20 мА, не исключено параллельного подключения последовательно соединённых светодиодов в ряды.

В данном устройстве можно заменить следующие детали. Микроконтроллер DD1 из серии PIC16F628A-I/P-xxx с рабочей тактовой частотой 20 МГц в корпусе DIP18. Стабилизатор напряжения DA1 отечественный КР142ЕН5А (5 В, 1.5 А). Полевые MOSFET транзисторы и VT1 - VT4 (N-канал) в корпусе I-Pak (TO-251AA), подойдут аналоги номиналов указанных на схеме. Диодный мост VD1 на рабочее напряжение не меньше 25 В и ток не меньше 2 А. Разъём питания X1 аналогичный указанному на схеме с центральным контактом d=2.1 мм. Неполярные конденсаторы С1 и С2 номиналом 0.01 - 0.47 µF x 50 V. Электролитические конденсаторы С3 и С4 ёмкостной номинал тот же, а напряжение не ниже указанного на схеме. Разноцветные светодиоды VD1 - VD6 на напряжение 2 - 2.5 В.


C этой схемой также часто просматривают:

Гирлянда на микроконтроллере своими руками

С наступающим вас дорогие пользователи. И к предстоящему празднику решил порадовать вас схемой- новогодняя гирлянда на микроконтроллере pic.

И прошу к просмотру подробнее данной статьи.

Схема устройства:




Она содержит четыре канала, к которым подключаются последовательно соединённые светодиоды, изображенные на рисунке ниже.


Ядром схемы является микроконтроллер PIC16F628A . Микроконтроллер работает по алгоритму, изображенному на рисунке. Код программы написан на языке ассемблер, смотреть листинг Garland\16F628ATEMP.ASM.

Полный цикл внутрисхемного программирования и отладки микроконтроллера PIC16F628A был осуществлён при помощи MPLAB IDE v8.15 (интегрированная среде разработки), компилятор MPASM v5.22 (входит в MPLAB IDE v8.15) и MPLAB ICD 2 (внутрисхемный отладчик - «Дебагер»). Для тех, кто не располагает средствами приведёнными выше, а имеет свою программу для работы с HEX файлами и иной программатор, можно в соответствующем проекте найти файл 16F628ATEMP.HEX. Техническую спецификацию микроконтроллера можно найти на сайте и .

Микроконтроллер DD1 имеет функциональные выходы RB4 – RB7, к которым подключаются усиливающие полевые MOSFET транзисторы VT1 – VT4. Техническую спецификацию транзисторов можно найти на сайте . Стоки транзисторов подключены к нажимным клеммникам X2 – X5. Напряжение питание нагрузки задаётся источником питания схемы, который подключают к разъёму X1. Максимальный коммутируемый ток на канал составляет 0.5 А. Микроконтроллер DD1 не имеет функции принудительного сброса, вывод для сброса подключен через резистор R1 к положительному потенциалу питания. Для генерации тактовой частоты в микроконтроллере используется встроенный генератор тактовой частоты на кристалле. Прибор может эксплуатироваться в диапазоне температур от – 40 °С до +85 °С.

Прибор запитывается от переменного или постоянного источника напряжения, подключаемого к разъему X1. Номинальное напряжение источника питания 12 В. Номинальный ток источника питания зависит от нагрузки и составляет 0.5 – 2 А. Для стабилизации питания используется обычная схема из диодного моста VD1, линейного стабилизатора DA1, фильтрующих конденсаторов C1 – C4.

В микроконтроллер запрограммированы 3 световых эффекта в основе лежит эффект «бегущие огни».
1) Гирлянды поочерёдно загораются и гаснут в одну и так же повторяют в другую сторону.
2) Гирлянды поочерёдно загораются и когда все четыре гирлянды горят, начинают поочерёдно гаснуть в том же направлении, так же повторяется и в обратном порядке.
3) 1 и 2, 3 и 4 гирлянды поочерёдно перемигиваются между собой. Микроконтроллер запрограммирован таким образом, что выполняет заранее установленное число повторов светового эффекта. Стоить отметить, что интервал времени между загораниями гирлянд меняется (нарастает, достигая пика, а затем падает), то есть виден эффект «временной раскачки». Для лучшей демонстрации световых эффектов гирлянды (так как они пронумерованы на схеме) следует располагать по порядку в одной плоскости. В данном случае украшение ели от корней до верхушки (по вертикали, разбив ель на четыре сектора для гирлянд), от 1 до 4 гирлянды, соответственно.

Питание гирлянд связано с источником питания подключаемым к разъёму X1, следовательно нужно рассчитывать последовательно соединённые светоизлучающие элементы (светодиоды, лампы накаливания). Общее напряжение питания находится из суммы напряжений последовательно соединённых светоизлучающих элементов. Так например, последовательно соединённых ярких светодиодов рассчитанных на напряжение 2 – 2,5 В будет 6 штук в одной гирлянде. Так как светодиоды потребляют 20 мА, не исключено параллельного подключения последовательно соединённых светодиодов в ряды.

Монтаж деталей односторонний. Размер отверстий от 0.7 мм до 3 мм. Файлы для изготовления печатной платы смотреть в папке .



В данном устройстве можно заменить следующие детали. Микроконтроллер DD1 из серии PIC16F628A-I/P-xxx с рабочей тактовой частотой 20 МГц в корпусе DIP18. Стабилизатор напряжения DA1 отечественный КР142ЕН5А (5 В, 1.5 А). Полевые MOSFET транзисторы и VT1 – VT4 (N-канал) в корпусе I-Pak (TO-251AA), подойдут аналоги номиналов указанных на схеме. Диодный мост VD1 на рабочее напряжение не меньше 25 В и ток не меньше 2 А. Разъём питания X1 аналогичный указанному на схеме с центральным контактом d=2.1 мм. Неполярные конденсаторы С1 и С2 номиналом 0.01 – 0.47 µF x 50 V. Электролитические конденсаторы С3 и С4 ёмкостной номинал тот же, а напряжение не ниже указанного на схеме. Разноцветные светодиоды VD1 – VD6 на напряжение 2 - 2.5 В.

Эта СДУ разработана в двух вариантах. Первый управляет только расположенными на его плате светодиодами и предназначен для разработки и отладки программ световых эффектов. Микроконтроллер с отлаженной программой может быть перенесён на плату второго варианта СДУ, к которому можно подключить 16 осветительных приборов, питающихся от сети 220 В

Из 20 выводов микроконтроллера ATtiny2313 в рассматриваемых СДУ использованы 19: два — для подачи напряжения питания; один — для подключения кнопки, управляющей скоростью воспроизведения световых эффектов; 16 — для формирования сигналов управления гирляндами или другими световыми приборами.

Предусмотрено восемь значений скорости воспроизведения эффектов, их переключают по кругу нажатиями на кнопку. При минимальной скорости состояние гирлянд изменяется каждые 8 с, а при максимальной период смены уменьшается до 0,5...1 с. Следует иметь в виду, что из-за особенностей программы необходимая для переключения скорости длительность нажатия на кнопку довольно велика. К тому же она зависит от скорости, установленной в данный момент. Информацию о скорости микроконтроллер хранит в своём EEPROM, поэтому при включении СДУ она становится такой же, какой была в предыдущем сеансе работы.

Рис. 1. Схема СДУ с микроконтроллером ATtiny2313 на 16 гирлянд

Схема отладочного варианта СДУ, управляющего только светодиодами HL1—HL16, изображена на рис. 1 .

Микроконтроллер DD1 работает от внутреннего RC-генератора частотой 4 МГц. Разъём ХР1 предназначен для соединения с программатором установленного в панель СДУ микроконтроллера. На время программирования цепь питания светодиодов должна быть разорвана выключателем SA1, что исключает их влияние на процесс программирования. Резистор R1 поддерживает высокий логический уровень напряжения на входе PD2 микроконтроллера, когда кнопка SB1 отпущена. При нажатой кнопке этот уровень становится низким.

Устройство собрано на печатной плате размерами 95x70 мм из фольгированного стеклотекстолита. Её чертёж показан на рис, 2 . Для микроконтроллера на плате предусмотрена панель. Это позволяет запрограммировать его и проверить в работе, а затем перенести в другую СДУ, которая будет описана ниже.

Плата рассчитана на установку оксидных конденсаторов (С1 и С2) SR или аналогичных. Диэлектрик конденсаторов СЗ и С4 — керамика. Резисторы — CF-0,125 или другие подобные. Трансформатор Т1 — ТПГ-2 с вторичным переменным напряжением 6 В, конструктивно предназначенный для установки на печатную плату. Можно применить его аналог BVEI 306 2061 мощностью 2,6 В-А. Стабилизатор DA1 в рассматриваемом случае теплоотвода не требует. Кнопки SB1 и выключатель SA1 могут быть любыми, подходящими по размерам для установки на плату.

Второй вариант СДУ управляет не светодиодами, а лампами накаливания или другими световыми приборами на 220 В. Для этого каждая из пар резистор—светодиод предыдущего варианта заменена симисторным коммутатором, схема которого изображена на рис. 3 . Для управления мощным симистором VS1 здесь использован оптрон 1)1, фотодинистор которого устроен так, что моменты его открывания всегда совпадают с переходами приложенного к нему напряжения через ноль. Это уменьшает создаваемые СДУ электромагнитные помехи.

Поскольку для управления оптроном МОС3043 достаточно тока через его излучающий диод всего 5 мА, суммарная нагрузка на микроконтроллер не превышает 80 мА. Общий ток потребления от узла питания в новом варианте приблизительно в два раза меньше. Это позволило отказаться от трансформатора и применить бестрансформаторный узел с гасящими конденсаторами. На его схеме (рис. 4 ) нумерация элементов продолжает начатую на рис. 1 .

Печатная плата второго варианта имеет размеры 195x85 мм. Её чертёж показан на рис. 5 . Элементы шестнадцати одинаковых коммутаторов имеют на нём позиционные номера с цифровыми префиксами, означающими порядковый номер коммутатора. Например, 8R1—8R3, 8U1, 8VS1 — элементы восьмого коммутатора, заменившего резистор R9 и светодиод HL8 и управляющего лампой накаливания (или собранной из них гирляндой) 8EL1.

Все 16симисторов 1VS1 — 16VS1 закреплены на общем теплоотводе из алюминиевой пластины размерами 160x25x2 мм, расположенной перпендикулярно поверхности платы. Крепёжные отверстия для симисторов просверлены в ней на высоте 19 мм от платы.

Симисторы ВТ138Х-600 в полностью изолированном корпусе TO-220F могут быть заменены приборами серий ВТ137—ВТ139 на 600 или 800 В, в том числе в обычном корпусе ТО-220 с металлическим крепёжным и тепло-отводящим фланцем. Поскольку этот фланец соединён внутри симистора с его выводом 2, а все эти выводы соединены на плате, изоляция симисторов от теплоотвода не требуется.

Рекомендуется сначала закрепить на теплоотводе симисторы, а затем смонтировать всю их сборку на плату. Непосредственно к выводам симисторов припаивают резисторы 1R3—16R3. Выводы 1 симисторов зажимают в обращенных к ним отверстиях винтовых зажимов ЗВИ-10-2,5-6 мм2, колодка с которыми (рис. 6 ) установлена вдоль длинной стороны платы рядом с сими-сторами. Всего в колодке 17 пар зажимов, 16 из которых служат для подключения ламп 1EL1—16EL1, а ещё одна — для их общего провода.


Конденсаторы С5 и С6 — К73-17В или импортные, способные работать при переменном напряжении не менее 250 В. Резисторы 1R1 —16R1 — MF-1.

Для микроконтроллера должна быть предусмотрена панель, в которую его следует устанавливать уже запрограммированным.

К статье прилагаются три версии программы микроконтроллера, пригодных для использования в обоих вариантах СДУ:
PG16H_S_REGULhex — 16 гирлянд работают независимо;
PG8_MK_S_REG.hex — две группы по восемь гирлянд работают синхронно;
PG4_MK_S_REGUL.hex — четыре группы по четыре гирлянды работают синхронно.

Конфигурацию микроконтроллера во всех случаях оставляют установленной на заводе-изготовителе.
Если используется меньшее число гирлянд (светодиодов), то элементы, относящиеся к неиспользуемым гирляндам, на платы описанных СДУ можно не устанавливать. При работе с СДУ второго варианта, все компоненты которого имеют гальваническую связь с сетью, необходимо соблюдать правила электробезопасности.

Журнал Радио,№11 2014г. И. АБЗЕЛИЛБАШ, г. Сибай, Башкирия

Способов разукрасить новогоднюю елку много, вот один из них.

На рисунке 1 изображена схема новогодней гирлянды. Она содержит четыре канала, к которым подключаются последовательно соединённые светодиоды, изображенные на рисунке 2.

Ядром схемы является микроконтроллер PIC16F628A. Микроконтроллер работает по алгоритму, изображенному на рисунке 3. Код программы написан на языке ассемблер, смотреть листинг Garland\16F628ATEMP.ASM.

Полный цикл внутрисхемного программирования и отладки микроконтроллера PIC16F628A был осуществлён при помощи (интегрированная среде разработки), компилятор MPASM v5.22 (входит в MPLAB IDE v8.15) и MPLAB ICD 2 (внутрисхемный отладчик - «Дебагер»). Для тех, кто не располагает средствами приведёнными выше, а имеет свою программу для работы с HEX файлами и иной программатор, можно в соответствующем проекте найти файл 16F628ATEMP.HEX. Техническую спецификацию микроконтроллера можно найти на сайте и .

Микроконтроллер DD1 имеет функциональные выходы RB4 – RB7, к которым подключаются усиливающие полевые MOSFET транзисторы VT1 – VT4. Техническую спецификацию транзисторов можно найти на сайте . Стоки транзисторов подключены к нажимным клеммникам X2 – X5. Напряжение питание нагрузки задаётся источником питания схемы, который подключают к разъёму X1. Максимальный коммутируемый ток на канал составляет 0.5 А. Микроконтроллер DD1 не имеет функции принудительного сброса, вывод для сброса подключен через резистор R1 к положительному потенциалу питания. Для генерации тактовой частоты в микроконтроллере используется встроенный генератор тактовой частоты на кристалле. Прибор может эксплуатироваться в диапазоне температур от – 40 °С до +85 °С.

Прибор запитывается от переменного или постоянного источника напряжения, подключаемого к разъему X1. Номинальное напряжение источника питания 12 В. Номинальный ток источника питания зависит от нагрузки и составляет 0.5 – 2 А. Для стабилизации питания используется обычная схема из диодного моста VD1, линейного стабилизатора DA1, фильтрующих конденсаторов C1 – C4.

В микроконтроллер запрограммированы 3 световых эффекта в основе лежит эффект «бегущие огни».
1) Гирлянды поочерёдно загораются и гаснут в одну и так же повторяют в другую сторону.
2) Гирлянды поочерёдно загораются и когда все четыре гирлянды горят, начинают поочерёдно гаснуть в том же направлении, так же повторяется и в обратном порядке.
3) 1 и 2, 3 и 4 гирлянды поочерёдно перемигиваются между собой. Микроконтроллер запрограммирован таким образом, что выполняет заранее установленное число повторов светового эффекта. Стоить отметить, что интервал времени между загораниями гирлянд меняется (нарастает, достигая пика, а затем падает), то есть виден эффект «временной раскачки». Для лучшей демонстрации световых эффектов гирлянды (так как они пронумерованы на схеме) следует располагать по порядку в одной плоскости. В данном случае украшение ели от корней до верхушки (по вертикали, разбив ель на четыре сектора для гирлянд), от 1 до 4 гирлянды, соответственно.

Питание гирлянд связано с источником питания подключаемым к разъёму X1, следовательно нужно рассчитывать последовательно соединённые светоизлучающие элементы (светодиоды, лампы накаливания). Общее напряжение питания находится из суммы напряжений последовательно соединённых светоизлучающих элементов. Так например, последовательно соединённых ярких светодиодов рассчитанных на напряжение 2 – 2,5 В будет 6 штук в одной гирлянде. Так как светодиоды потребляют 20 мА, не исключено параллельного подключения последовательно соединённых светодиодов в ряды.

Монтаж деталей односторонний. Размер отверстий от 0.7 мм до 3 мм. Файлы для изготовления печатной платы смотреть в папке .

Печатная плата изображена на рисунке 4. Расположение деталей смотреть на рисунке 5.

В данном устройстве можно заменить следующие детали. Микроконтроллер DD1 из серии PIC16F628A-I/P-xxx с рабочей тактовой частотой 20 МГц в корпусе DIP18. Стабилизатор напряжения DA1 отечественный КР142ЕН5А (5 В, 1.5 А). Полевые MOSFET транзисторы и VT1 – VT4 (N-канал) в корпусе I-Pak (TO-251AA), подойдут аналоги номиналов указанных на схеме. Диодный мост VD1 на рабочее напряжение не меньше 25 В и ток не меньше 2 А. Разъём питания X1 аналогичный указанному на схеме с центральным контактом d=2.1 мм. Неполярные конденсаторы С1 и С2 номиналом 0.01 – 0.47 µF x 50 V. Электролитические конденсаторы С3 и С4 ёмкостной номинал тот же, а напряжение не ниже указанного на схеме. Разноцветные светодиоды VD1 – VD6 на напряжение 2 - 2.5 В.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 МК PIC 8-бит

PIC16F628A

1 В блокнот
DA1 Линейный регулятор

L7805AB

1 КР142ЕН5А В блокнот
VT1-VT4 MOSFET-транзистор

IRLU024N

4 В блокнот
VD1 Диодный мост 2W10M 1 В блокнот
С1 Конденсатор 0.1 мкФ 1 В блокнот
C2 Конденсатор 0.1 мкФ 1 В блокнот
С3 100мкФ 10В 1 В блокнот
C4 Электролитический конденсатор 220мкФ 25В 1


Copyright © 2024 Строительный портал - Djec.