Как сделать автомобильный стробоскоп своими руками. Мощный стробоскоп своими руками Схемы стробоскопа на светодиодах руками

Многие знают, как важна для слаженной работы двигателя правильная установка угла опережения зажигания и регуляторов угла опережения зажигания. Ошибочная установка начального угла опережения зажигания всего на 2-3 градуса, а также различные неисправности регуляторов опережения приведут к потере мощности двигателя, его перегреву, повышенному расходу топлива и самое печальное к сокращению срока эксплуатации двигателя автомобиля.


Но проверка и регулировка угла опережения является весьма большой проблемой, которая не всегда доступна даже опытному механику. Стробоскоп своими руками поможет решить эту проблему. С их помощью любой автолюбитель может в течение 15 минут проверить и выставить угол опережения зажигания, а также проверить работоспособность центробежного и вакуумного регуляторов опережения.

Основа схемы стробоскопа таймерные устройства, собранные на микросхемах КР1006ВИ1 которые обладают более стабильными временными характеристиками, так как длительности импульса и паузы между импульсами не зависят от напряжения источника питания.

К высоковольтному проводу первого цилиндра бензинового двигателя прибор подключается посредством зажима типа “крокодил” . В верхнем положении движка переключателя SA1 прибор работает в режиме тахометра, в нижнем положении - в режиме автомобильного стробоскопа.


Стробоскоп своими руками схема на КР1006ВИ1

В верхнем положении движка переключателя SA1 таймер DD1 включен по схеме генератора импульсов с длительностью примерно 0,5 мс и определяется, в основном, номиналами резистора R4 и конденсатора С2. Такая длительность импульса является оптимальной, и выбиралась по следующим далее критериям. При малой длительности им пульсов яркости четырёх светодиодов при дневном освещении может оказаться недостаточно для освещения метки на низкой частоте вращения шкива двигателя. При большей длительности импульсов изображение метки будет нечётким, “размытым” на высокой частоте вращения вала двигателя.

Период повторения импульсов зависит от номиналов резисторов R5, R6 и конденсатора С2, и регулируется переменным резистором R6.

В нижнем положении движка переключателя SA1 прибор работает в режиме автомобильного стробоскопа. Таймер DD1 в этом режиме включен по схеме одновибратора импульсов с той же самой длительностью 0,5 мс. Запускается одновибратор отрицательным перепадом напряжения на входе прибора, который через цепь С1, R3, SA1.2 подаётся на вход таймера DD1. Транзистор VT1 усиливает ток до необходимой величины.

Импульсный ток в 250 мА через светодиод, является великоватым, поэтому номиналы резисторов R11, R12 выбраны таким образом, чтобы импульсный ток через каждый из светодиодов HL1...HL4 на малой частоте вспышек не превышал 100 мА. На высокой частоте вспышек период уменьшается, и конденсатор С6 не успевает зарядиться через резистор R10 до напряжения, близкого к напряжению источника питания. Поэтому напряжение на нем уменьшается. Это приводит к снижению импульсного тока через светодиоды, что существенно повышает надёжность устройства.

Диод VD1 развязывает цепи заряда и разряда конденсатора С2. Резистор R3 и диод VD2 защищают вход таймера DD1 от высокого положительного напряжения. От отрицательного напряжения таймер DD1 защищен резистором R3 и внутренним диодом. Конденсаторы СЗ, С4 помехоподавляющие. От ошибочной смены полярности источника питания защищает диод VD3.

В качестве диодов VD1, VD2 можно применить любые диоды из серии КД521. Диод VD3 можно заменить любым диодом из серий , Кд212. Таймер КР1006ВИ1 можно заменить импортным аналогом NE555. Резистор R6 применён типа СПЗ-З0а с характеристикой Б и углом поворота движка 270°. Можно применить резистор типа СП-I, но у него меньший угол поворота движка - 255°.

Если в распоряжении радиолюбителя не окажется переменного резистора с характеристикой Б, то можно применить переменный резистор с характеристикой В, но шкала в этом случае получится обратной. В случае отсутствия переменного резистора номиналом 220 кОм, можно применить переменный резистор номиналом 150 кОм или 470 кОм. В первом случае номиналы резисторов R4, R5 следует уменьшить, а номинал конденсатора С2 увеличить в 1,47 раза. Во втором случае номиналы резисторов R4, R5 следует увеличить, а номинал конденсатора С2 уменьшить в 2,14 раза. От типа конденсатора С2 зависят температурные и временные характеристики прибора, поэтому конденсатор С2 лучше применить типа К73-17 на напряжение 63 В. Переключатель SA1 - любой малогабаритный на два положения и два направления, например, типа П2Т-1 -1 В. Конденсаторы С5, С6 - типа К50-35, но лучше импортные, у них меньшие габариты и ток утечки. Конденсатор С1 типа КТ-2, или другого типа, но он должен выдерживать напряжение не ниже 500 В. Конденсаторы СЗ, С4 - типа КМЗ...КМ6. Переменный резистор R1 - малогабаритный типа СП4-1. Транзистор VT1 должен быть с коэффициентом усиления тока менее 50 и с максимальным током коллектора не менее 0,4 А.

В качестве VT1 можно применить полевой транзистор КП505А (Б, В). Резисторы R8, R9 в этом случае нужно исключить, а затвор транзистора соединить с выводом 3 микросхемы DD1. Провод от зажима до прибора должен быть экранированным. Его длину не следует выбирать более 35...40 см. экранирующая оплётка соединена с общим проводом на выходе прибора.

При разработке радиолюбителем рисунка печатной платы стробоскопа своими руками(например в ) следует учесть, что входные цепи таймера DD1 должны быть как можно короче, так как автомобильный бензиновый двигатель является мощным источником помех.

Налаживание стробоскопа своими руками

Устанавливают переключатель SA1 в верхнее по схеме положение и градуируют шкалу переменного резистора R6 с помощью частотомера или, что хуже, осциллографа. В самом крайнем случае, если нет частотомера и осциллографа, отградуировать прибор можно с помощью цифрового мультиметра с измерителем ёмкости конденсаторов. Длительность импульса t, = 0,7 R4C2. Длительность паузы t2 = 0,7 (R5 + R6) С2. Для удобства пользования прибором градуировать следует в мин-1. На этом налаживание прибора завершено. Выравнивать токи через светодиоды HL1, HL2 и HL3, HL4 не нужно.

Пользоваться прибором не сложно. Для проверки работы вакуумного и центробежного регуляторов угла опережения зажигания бензинового двигателя установить движок переключателя SA1 в нижнее положение. Закрепить датчик на высоковольтный провод первого цилиндра двигателя, подать питание на прибор. Запустить двигатель и направить луч мигающего света на установочные метки. Если метки плохо видны из-за грязи или окислов металла, следует очистить их и выделить белой краской или мелом. Сопротивление резистора R1 установить таким, чтобы прибор устойчиво срабатывал на искру только при подключенном датчике к проводу высокого напряжения первого цилиндра бензинового двигателя.

Для измерения частоты вращения ротора (коленчатого вала) двигателя переключатель SA1 перевести в верхнее положение, подать питание на прибор и направить луч мигающего света на шкив работающего двигателя с предварительно нанесенной меткой. Вращая движок переменного резистора R6 добиться того, чтобы шкив с меткой казался неподвижным. Метка при этом должна быть видна только в одном месте шкива двигателя. Если на шкиве окажется две метки, то это означает, что частота вспышек вдвое большее частоты вращения вала двигателя.

Прибор проверен в работе в течение 48 часов в режиме тахометра на минимальной и максимальной частоте вспышек светодиодов HL1 ...HL4 от источника напряжения 16 В и показал высокую надёжность в работе.

В качестве реле можно использовать отечественный аналог РЭС-10 на 12 вольт.

Работает схема по следующему алгоритму, в момент подачи напряжения питания от аккумуляторной батареи конденсатор C1 начинает заряжаться через резистор R3 . Достигнув нужного значения это напряжение, поступает на базу транзистора, который открывается. После этого срабатывает реле а, его контакт замыкается и подготавливает тиристор к открытию. Как только на управляющий электрод тиристора через делитель напряжения на резисторах R1, R2 приходит управляющий импульс тиристор открывается, а конденсатор начинает разряжаться через светодиоды. Происходит короткая яркая вспышка.

Затем транзистор закрывается, размыкает свой контакт и реле, но с небольшой задержкой, увеличивая тем самым на доли секунды время горения светодиодов. Схема переходит в исходное состояния, ожидая следующий управляющий импульс.

Благодаря такому простому схемотехническому решению мерцание светодиодов стробоскопа становится более ярким и метка на маховике хорошо заметна.


Стробоскоп своими руками простая схема на реле

Подбором емкости конденсатора можно варьировать длительность горения светодиодов. Чем выше значение ёмкости конденсатора, тем сильнее вспышка, но и длиннее шлейф метки. При меньшем значении ёмкости резкость метки возрастает, но уменьшается яркость.

Элементы схемы стробоскопа без особых затруднений можно разместить в корпусе светодиодного фонаря. С тыльной стороны фонарика делают небольшое отверстие и пропускают питающие провода длиной не менее полуметра, на концы которых для удобства использования припаивают крокодилы. С боку в корпусе также проделывают отверстие для экранированного провода контакта Х1. На конце экранную оплётку плотно обматывают изолентой, а к центральной жиле припаивают медный провод длиной 10 см, который является датчиком стробоскопа. Этот провод при подключении необходимо намотать в 3-4 витка на высоковольтный провод первого цилиндра поверх изоляции. Намотку обязательно делайте как можно ближе к свече, чтобы избежать наводок соседних проводов.

Основой схемы стробоскопа является интегральная микросхема одновибратор 155АГ1, которая запускается импульсами отрицательной полярности. Поэтому для их формирования управляющий сигнал с прерывателя автомобиля подается на базу биполярного транзистора VT1, который их и формирует. Сопротивления R1, R2, R3 и стабилитрон VD2 предназначены для ограничения амплитуды входного сигнала поступающего с прерывателя зажигания.


Стробоскоп своими руками на светодиодах

Емкостью С4 и резистором R6 регулируют требуемую длительность импульсов, которые генерируются одновибратором. При заданных как на схеме значениях продолжительность этих импульсов будет 1,5-2 мс.

Очень мощный светодиодный стробоскоп, который отлично дополнит любой танцпол дискотеки. Построен стробоскоп на трех светодиодных матрицах общей мощностью 150 Вт.

Принцип работы устройства состоит в том, чтобы давать очень короткие импульсы света (вспышки) через заданный промежуток времени. По действию очень сильно напоминает молнию во время дождя, когда полностью темное помещение на миллисекунды озаряет яркий свет.
Во время дискотеки это выглядит особенно завораживающе.
Детали:

  • Светодиодная матрица –
  • Источник 12 В –
  • Транзистор K2543 –
  • Диодный мост –
  • Микросхема NE555 –
  • Резисторы и конденсаторы –
Светодиоды на сетевое напряжение со встроенным драйвером:

Схема стробоскопа


Я бы не сказал, что схема сложная, скорее простая. Но она не имеет гальванической развязки по напряжению, что означает – нельзя прикасаться ни к одному элементы схемы во время её работы и во время сборки быть особо внимательным.
Визуально схему можно разделить на блок питания 12 В, генератор импульсов, выпрямитель и линейку светодиодов.

Работа стробоскопа

На микросхеме NE555 собран генератор коротких импульсов. Время между импульсами можно менять вращая ручку переменного резистора R3.
К выходу этого генератора подключен ключ на полевом транзисторе, который коммутирует напряжение 220 В, в цепи питания светодиодных матриц, включенных параллельно друг другу.
Светодиодные матрицы питаются постоянным током, который выпрямляется диодным мостом. Это нужно для того, чтобы можно было коммутировать цепь полевым транзистором, который работает только с постоянным напряжением.

Сборка стробоскопа

Стробоскоп собран в кожухе от кабельканала. Светодиоды прикручены к широкой стороне, без радиаторов. Так как светодиод используется где-то на 2-5% от своей мощности (импульсная работа), то надобность в теплоотводах отпадает.


Боковые стенки вырезаны из того же кабельканала и приклеены клеем. Сверху выведен переменный резистор для регулировки частоты мерцания.



Блоки схемы в корпусе:




Предостережение

Светодиоды очень мощные и могут повредить ваши глаза, так что смотреть на них при работе не рекомендуется. Стробирующие вспышки особенно опасны, так как глаз расслабляется в темноте, а яркий импульс проникает напрямую в сетчатку глаза.
Так же не забываем, что вся схема находиться под сетевым напряжением, опасным для жизни.

Результат работы

Работу стробоскопа, к сожалению, не передать ни через фото, ни через видео. Так как даже видеокамера очень плохо улавливает короткий импульс и её в итоге просто засвечивается.
Но я от себя могу сказать, что стробоскоп получился отличный, вспышки короткие и очень яркие. Смотрится очень эффектно, в общем все как надо.

В интернете очень долго пытался найти схему светодиодного стробоскопа. Понимающие в электронике люди сейчас скажут «подумаешь, стробоскоп, и что там сложного». Стробоскопы бывают разными, и все известные ранее схемы мне не подходили, поскольку единственной целью было получить эффект милицейского стробоскопа. Может не все заметили, но милицейская мигалка работает весьма интересным образом – каждая лампочка вспыхивает несколько раз, затем переключается. В итоге получаем эффект, который более известен под названием «полицейская мигалка».

Стробоскоп можно собрать на разных схемах с применением мультивибратора, но ни одна из них не обеспечивает нужного эффекта или же эффект не стабильный. Такая задача вполне выполнима, если уметь прошивать МК, но в моем случае не было возможности (недружелюбен к микроконтроллерам). Оставалось найти альтернативу на простых и доступных элементах. На зарубежных сайтах была найдена весьма интересная электросхема с применением таймера 555 серии. Микросхема работает как генератор прямоугольных импульсов.

В схеме также использован счётчик К561ИЕ8 (в моем случае использован импортный аналог, в общем он не критичен). Микросхема, представляет, из себя десятичный счётчик-делитель, то есть имеет 10 дешифрированных выходов. Она состоит из высокоскоростных счётчиков и дешифраторов. Работа счётчика, думаю, понятна всем, пояснять не буду. Для того, чтобы получить эффект мигалки, где каждый светодиод мигает по два раза, нужно использовать два близких выходов счётчика. При подаче сигнала на счётчик, на выходах поочерёдно образуются импульсы. Сначала импульс образуется на первом выходе, затем переключается на второй, третий и так до конца, потом процесс повторяется сначала. Частоту и интенсивность вспышек можно регулировать, если регулируется номиналом резистора между 6 и 7 выводами таймера. В выходном каскаде можно использовать практически любые мощные транзисторы обратной проводимости, в моем варианте использовались 13007 (выпаяны из платы балласта ЛДС).


Можно также настроить количество вспышек на каждую лампу (1-5 вспышек до переключения). Для этого просто добавляем диоды на выходы микросхемы. К примеру, один канал это выводы 4 и 2, а второй соответственно 7 и 9, для тройной вспышки один канал, просто нужно выводы 1,3,5 (первый канал) и 6,8,0 (второй канал) диодами подключить друг к другу. Мощность подключённой нагрузки зависит от силовых ключей. Если планируется маломощный стробоскоп на светодиодах, то на выходе можно использовать маломощные КТ315, при более мощных нагрузках в качестве выходных ключей стоит использовать полевые транзисторы.


Устройство имеет достаточно широкий диапазон входных напряжений, начинает работать от 4,5-5 вольт, при этом частота вспышек не меняется в зависимости от номинала входного напряжения. Такой стробоскоп обошёлся всего 1,5$ (транзисторы имелись в наличии). Из схемы также можно исключить стабилизатор напряжения на 5 вольт, микросхема прекрасно работает от автомобильного аккумулятора. Если планируете использовать светодиоды, то не забудьте про ограничительные резисторы, а то будете наблюдать за помутнением кристалла светодиодов.


Весь монтаж сделал в алюминиевом корпусе от китайского электронного трансформатора для питания галогенок на 12 вольт.


Корпус оказался очень подходящим. Устройство прям от заводского не отличить, хотя монтаж компонентов делался на макетной плате.

Во многих схемах стробоскопов для определения точного момента зажигания используют лампы ИФК и довольно сложные схемы их "обвески". Мною предложена относительно несложная схема стробоскопа, которая легка в наладке и не имеет дефицитных деталей (см. рисунок).

R1C1R2VD1VD2 - звено, согласующее высоковольтный сигнал со входа устройства на вход микросхемы DA1, которая является таймером 1006ВИ1 , включенным по схеме одновибратора. На каждый входной импульс на выходе 3 появляется импульс, время существования которого определяется звеном R3C2. Резистором R3 регулируют длительность выходного импульса. На транзисторе VT1 собран усилитель.

На элементе DA1 собран одновибратор, т.е. ждущий мультивибратор, который ожидает входные импульсы с высоковольтного провода первого цилиндра. Датчик этих импульсов представляет собой обычную прищепку, на одной из сторон которой намотан провод диаметром 0,1 ...0,3 мм.

Количество витков 30-50, эта обмотка надежно закреплена клеем "Момент" или "Супер цемент", "Глобус" и т.д. Поверхность обмотки защищают обычной изолентой таким образом, чтобы прищепка надежно закрывалась или открывалась. К одному концу этой обмотки припаивают провод, лучше экранированный. Экран провода подключают к "земле" в основной схеме. Элементы R1 C1 R2 R3 согласовывают сигнал от датчика с входом микросхемы. Длительность выходного импульса регулируют звеном R3C2. Транзистор VT1 включает и выключает непосредственно светодиоды HL1-HL9. Свечение светодиодов должно быть ярко-белым. Светодиоды не имеют определенной марки.

Длительность выходного импульса должна быть в пределах 0,5...0,8 мс. Если больше, то светодиоды долго не выдерживают, и пометки на маховике или на шкиве коленвала будут "размыты". При регулировке обороты двигателя нужно держать в пределах 850... 1700 мин -1 . Обороты перед регулированием лучше пометить светоотражающей краской.

Детали желательно использовать как можно меньших типоразмеров, от этого зависят размеры платы. Конденсатор С1 слюдяной или К73-11, К73-17 с рабочим напряжением не меньше 500 В. Светодиоды нужно предварительно проверить на функционирование. Их установка на плате должна быть сконцентрирована в одном месте с целью максимального потока излучения. Размеры печатной платы зависят от конкретного устройства, в корпус которого исполнитель хочет "пристроить" стробоскоп. Я расположил стробоскоп в корпусе плоского электрического фонарика. Кроме проводо датчика, о котором было сказано выше, нужно ввести провода +12 В и "масса".

Собранный прибор нужно проверить, чтобы не вывести из строя светодиоды, которые являются самыми дорогими элементами на плате! Вместо них следует включить последовательно соединенные любой светодиод и резистор 1,5 кОм. Подключить провода, провод датчика пристроить на высоковольтный провод первого цилиндра.

Провода не должны касаться движущихся частей двигателя! Заведите двигатель и наблюдайте свечение светодиода. Осциллографом проконтролируйте длительность импульса на выводе 3 DA1, если она лежит в пределах 0,5...0,8 мс, то схема работает, и можно смело подключать светодиоды. Подключение осуществляйте только при заглушенном двигателе!

Отключите шланг "вакуума" от распределителя зажигания. Сделайте все необходимые подключения. Заведите двигатель, направьте луч стробоскопа на шкив коленвала или маховик. Наблюдайте пометки на соответствующих местах согласно техническому описанию конкретного автомобиля. Если пометки стоят на своих местах, то момент за-жигания установлен правильно. Если нет, то потребуется регулировка. Увеличьте обороты двигателя, наблюдайте перемещение пометок. Это констатирует, что центробежный регулятор момента зажигания работает. Осторожно подключите "вакуум", наблюдайте за перемещением положения пометок. Если есть изменение, то вакуумный регулятор распределителя работает.

Э.Л. Вьюга, г. Черкассы

Данный стробоскоп на светодиодах позволяет получить очень яркие вспышки видимые даже в дневное время со значительного расстояния, благодаря применению 3 мощных светодиодов на 1 Вт или одного на 3Вт.

Схема стробоскопа предоставляет возможность выбора режима работы путем переключения четырех перемычек. Более подробно как производится выбор того или иного режима, а также изменения временных интервалов в прошивке микроконтроллера PIC12F629, можно прочитать в предыдущей статье о .

Cтробоскоп на мощных светодиодах. Описание работы

Принцип работы обеих схем идентичен, стой лишь разницей, что в данном варианте применен мощный светодиод, и как следствие этого, более мощный транзисторный ключ. Поскольку мощный светодиод управляется очень короткими импульсами и относительно большими интервалами между ними, поэтому ни светодиод, ни транзистор не нуждаются в радиаторе для отведения тепла.

Светодиоды высокой мощности нужно управлять . В данном случае в качестве применен простой линейный ограничитель тока возле транзисторов VT1 и VT2. Резисторы R6 и R7 являются ограничителями тока. В случае, если в схеме стробоскопа применяется LED с током 700 мА, то на место резистора R6 необходимо установить перемычку, а резистор R7 должен быть мощностью 0,5 Вт. Для LED с током 350 мА необходимо установить оба резистора (R6, R7 по 0,25 Вт каждый).

Так же в схеме стробоскопа предусмотрена возможность остановки его работы путем подачи низкого уровня на вход 2 микроконтроллера PIC12F629.



Copyright © 2024 Строительный портал - Djec.